Sains Malaysiana 54(1)(2025): 121-130
http://doi.org/10.17576/jsm-2025-5401-10
Manipulasi Struktur Hablur Selulosa: Sifat Mekanik, Morfologi, Terma dan Biodegradasi Komposit berasaskan Polietilena
(Manipulation of Cellulose Crystalline
Structure: Mechanical, Morphological, Thermal and Biodegradation Properties of
Polyethylene-based Composites)
NOOR
AFIZAH ROSLI* & ISHAK AHMAD
Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
Received: 2 August
2024/Accepted: 13 September 2024
Abstrak
Kehabluran selulosa yang boleh memberi kesan kepada sifat komposit termoplastik boleh diubah melalui pelbagai kaedah rawatan, termasuk rawatan mekanik atau kimia. Dalam kajian ini, kehabluran selulosa dimanipulasi menggunakan pengisar bebola mekanik. Objektif utama kajian ini adalah untuk menilai kesan pengubahan kehabluran selulosa terhadap prestasi keseluruhan komposit berasaskan polietilena berketumpatan tinggi (HDPE). Sifat komposit dinilai melalui ujian tegangan dan hentaman, spektroskopi inframerah pantulan keseluruhan dikecilkan (ATR-IR), mikroskop elektron pengimbasan (SEM), analisis termogravimetri (TGA) dan ujian biodegradasi tanah. Kesan kehabluran selulosa terhadap sifat mekanik komposit HDPE mendedahkan peningkatan kekuatan tegangan sebanyak 5% dengan penambahan 2% selulosa hablur rendah (LCC). Sebaliknya, kekuatan hentaman tertinggi komposit HDPE dicapai melalui penggabungan 6% LCC. Analisis ATR-IR menunjukkan bahawa keamatan puncak komposit HDPE-LCC berkurangan, manakala komposit HDPE dengan selulosa hablur tinggi (HCC) tidak menunjukkan sebarang perubahan keamatan puncak berbanding dengan spektrum HDPE. Pemeriksaan SEM mendedahkan bahawa LCC mempunyai sebaran yang lebih baik dalam matriks HDPE berbanding HCC. Degradasi terma berkurang sebanyak 32% dengan penambahan kedua-dua HCC dan LCC.
Kajian biodegradasi tanah menunjukkan bahawa sifat mekanik komposit HDPE-LCC merosot dengan lebih besar berbanding komposit HDPE-HCC selepas 24 bulan dalam tanah. Secara keseluruhan, kajian ini menyimpulkan bahawa pengubahan kehabluran selulosa dapat membawa kepada penghasilan komposit dengan sifat yang dilaraskan.
Kata kunci: Amorfus; biodegradasi tanah; polietilena berketumpatan tinggi; selulosa mikrohablur
Abstract
Cellulose
crystallinity can be altered by various treatment methods, including mechanical
or chemical treatments, which can affect the properties of thermoplastic
composites. In this study, the crystallinity of cellulose was manipulated using
mechanical ball milling. The primary objective was to assess the impact of
altering the cellulose crystallinity on the overall performance of high-density
polyethylene (HDPE)-based composites. The mechanical and structural properties
of the composites were assessed using tensile and impact tests, attenuated
total reflectance infrared (ATR-IR) spectroscopy, scanning electron microscopy
(SEM), and thermogravimetric analysis (TGA). The degradation properties of the
HDPE composites were evaluated using a soil-burial degradation test. The impact
of cellulose crystallinity on the mechanical properties of HDPE composites
showed a marginal enhancement of 5% in tensile strength with the incorporation
of 2% low-crystallinity cellulose (LCC). The highest impact strength of the HDPE
composites was attained by the incorporation of 6% LCC. ATR-IR analysis showed
that the peak intensity of the HDPE-LCC composite decreased, whereas the HDPE
composite with high-crystallinity cellulose (HCC) did not exhibit changes in
peak intensity compared to the HDPE spectrum. SEM examination showed that LCC
possessed superior dispersion in the HDPE matrix compared to that of HCC.
Thermal degradation decreased by up to 32% with the addition of HCC and LCC. A
soil burial degradation study showed that the mechanical properties of the
HDPE-LCC composite deteriorated more than those of the HDPE-HCC composite after
24 months. This study concluded that altering the crystallinity of cellulose
can lead to composites with tailored properties.
Keywords:
Amorphous; high-density polyethylene; microcrystalline cellulose; soil burial
REFERENCES
Abba, H.A., Zahari,
I.N., Sapuan, S.M. & Leman, Z. 2017.
Characterization of millet (Pennisetum glaucum) husk fiber (MHF) and
its use as filler for high density polyethylene (HDPE) composites. BioResources 12(4): 9287-9301.
Bhasney, S.M., Mondal, K., Kumar, A. & Katiyar, V. 2020. Effect of microcrystalline cellulose
[MCC] fibres on the morphological and crystalline behaviour of high density polyethylene [HDPE]/polylactic acid [PLA]
blends. Composites Science and Technology 187: 107941.
Bioplastics. 2018. Bioplastics Market
Data 2018. European.
Borisova, Y.Y., Minzagirova,
A.M., Gilmanova, A.R., Galikhanov,
M.F., Borisov, D.N. & Yakubov, M.R. 2019. Heavy
oil residues: Application as a low-cost filler in polymeric materials. Civil
Engineering Journal 5(12): 2554-2568.
Ghosh, A. 2023. Enhancing the thermoplastic behavior and mechanical performance of recycled
HDPE/CaCO3 composites using oxidized polyethylene. Journal of Applied
Polymer Science 140(23): e53923.
Jubinville, D., Chen, G. & Mekonnen,
T.H. 2023. Simulated thermo-mechanical recycling of high-density polyethylene
for the fabrication of hemp hurd plastic composites. Polymer
Degradation and Stability 211: 110342.
Khoo, K.S., Ho, L.Y., Lim, H.R., Leong,
H.Y. & Chew, K.W. 2021. Plastic waste associated with the COVID-19
pandemic: Crisis or opportunity? Journal of Hazardous Materials 417:
126108.
Khouaja, A., Koubaa, A.
& Daly, H.B. 2021. Dielectric properties and thermal stability of cellulose
high-density polyethylene bio-based composites. Industrial Crops and
Products 171: 113928.
Li, J., Song, Z., Li, D., Shang, S. &
Guo, Y. 2014. Cotton cellulose nanofiber-reinforced high
density polyethylene composites prepared with two different pretreatment methods. Industrial Crops and Products 59: 318-328.
Makhlouf, A., Belaadi,
A., Amroune, S., Bourchak,
M. & Satha, H. 2022. Elaboration and
characterization of flax fiber reinforced high
density polyethylene biocomposite: Effect of the
heating rate on thermo-mechanical properties. Journal of Natural Fibers 19(10): 3928-3941.
Mazur, K., Jakubowska,
P., Romańska, P. & Kuciel,
S. 2020. Green high density polyethylene (HDPE) reinforced
with basalt fiber and agricultural fillers for
technical applications. Composites
Part B: Engineering 202: 108399.
Mulinari, D.R., Voorwald,
H.J.C., Cioffi, M.O.H. & da Silva, M.L.C.P. 2017. Cellulose fiber-reinforced high-density polyethylene composites -
Mechanical and thermal properties. Journal
of Composite Materials 51(13): 1807-1815.
Mulinari, D.R., Voorwald,
H.J.C., Cioffi, M.O.H., da Silva, M.L.C.P., da Cruz, T.G. & Saron, C. 2009. Sugarcane bagasse cellulose/HDPE composites
obtained by extrusion. Composites Science and Technology 69(2): 214-219.
Pöllänen, M., Suvanto, M.
& Pakkanen, T.T. 2013. Cellulose reinforced high density polyethylene composites - Morphology,
mechanical and thermal expansion properties. Composites Science and Technology 76: 21-28.
Ren, Z., Guo, R., Zhou, X., Bi, H., Jia,
X., Xu, M., Wang, J., Cai, L. & Huang, Z. 2021. Effect of amorphous
cellulose on the deformation behavior of cellulose
composites: Molecular dynamics simulation. RSC Advances 11(33):
19967-19977.
Rosli, N.A., Wan Ishak, W.H., Darwis, S.S., Ahmad, I. & Mohd Khairudin, M.F.A. 2021. Bio-nanocomposites based on
compatibilized poly(lactic Acid) blend-reinforced
agave cellulose nanocrystals. BioResources 16(3): 5538-5555.
Rosli, N.A., Ahmad, I., Anuar,
F.H. & Abdullah, I. 2019. Effectiveness of cellulosic Agave angustifolia fibres on the performance of compatibilised poly(lactic acid)-natural rubber blends. Cellulose 26(5):
3205-3218.
Rosli, N.A., Ahmad, I., Abdullah, I., Anuar, F.H. & Mohamed, F. 2015. Hydrophobic
modification of cellulose isolated from Agave angustifolia fibre by
graft copolymerisation using methyl methacrylate. Carbohydrate Polymer 125: 69-75.
Tajeddin, B. & Abdulah,
L.C. 2010. Thermal properties of high density polyethylene kenaf cellulose composites. Polym.
Polymer Composite 18(5): 257-261.
Tran, T.N., Paul, U., Heredia-Guerrero,
J.A., Liakos, I., Marras,
S., Scarpellini, A., Ayadi,
F., Athanassiou, A. & Bayer, I.S. 2016.
Transparent and flexible amorphous cellulose-acrylic hybrids. Chemical
Engineering Journal 287: 196-204.
Wan Ishak, W.H., Rosli,
N.A. & Ahmad, I. 2020. Influence of amorphous cellulose on mechanical,
thermal, and hydrolytic degradation of poly(lactic
acid) biocomposites. Scientific Reports 10(1):
11342.
Xanthopoulou, E., Chrysafi,
I., Polychronidis, P., Zamboulis,
A. & Bikiaris, D.N. 2023. Evaluation of
eco-friendly hemp-fiber-reinforced recycled HDPE
composites. Journal of Composites Science 7(4): 138.
Zhang, B., Bu, X., Wang, R., Shi, J., Chen,
C. & Li, D. 2021. High mechanical properties of micro fibrillated
cellulose/HDPE composites prepared with two different methods. Cellulose 28(9): 5449-5462.
Zhang, L., Liu, H., Zheng, L., Zhang, J.,
Du, Y. & Feng, H. 1996. Biodegradability of regenerated cellulose films in
soil. Industrial & Engineering Chemistry Research 35(12): 4682-4685.
*Corresponding author; email:
nafizah@ukm.edu.my